Tolérancement au pire des cas

Le tolérancement au pire des cas consiste à garantir dans tous les cas le fonctionnement du produit :

  • Si toutes les pièces produites sont bonnes alors l’assemblage sera fonctionnel

Pour calculer l’intervalle de tolérance au pire des cas, on procède de la manière suivante :

Image 1

On choisit un sens positif et un sens négatif et on écrit la relation entre le jeu et les différentes caractéristiques.

Ici :

Jeu = A – B – C – D

Dans le pire des cas, on écrit :

Equation 1

Si on considère une répartition uniforme des tolérances, on en déduit

Equation 2

Dans notre cas, nous avons :

Equation 3

Avantage du tolérancement au pire des cas :

En utilisant le tolérancement au pire des cas on garantit la conformité de l’assemblage final.

Inconvénient du tolérancement au pire des cas :

1 – Coût de production élevé :

La tolérance sur les caractéristiques individuelles est calculée par

Equation 4

Plus il y a de pièces dans le jeu, plus la tolérance sur les caractéristiques individuelles est petite, ce qui va fortement augmenter les coûts de production.

2 – Sur-qualité :

La division de l’intervalle de tolérance sur la cote condition conduit à des tolérances très serrées sur les caractéristiques élémentaires. En cas de production bien conduite (c’est-à-dire centrée), la qualité demandée est très supérieure au juste nécessaire.

L’exemple suivant montre une simulation d’assemblage de 4 lots de A, B, C et D possédant tous une capabilité de production limite (Cp = 1)

Image 2

On observe que dans ce cas, la capabilité de l’assemblage final est Cp = 2, soit très supérieure à ce que l’on pourrait s’attendre en n’assemblant que des lots dont la capabilité est limite.

Pour éviter de produire en sur-qualité et limiter les coûts de production au juste nécessaire, il peut être judicieux d’utiliser le tolérancement statistique dans certains cas.